✔ 最佳答案
Let z' is the conjuate of z
(a) |(z - 1)/(z - 4)| = 2
|z - 1| = 2|z - 4|
(z - 1)(z - 1)' = 4(z - 4)(z - 4)'
z^2 - (z + z') + 1 = 4[z^2 - 4(z + z') + 16]
3z^2 - 15(z + z') + 63 = 0
z^2 - 5(z + z') + 21 = 0
(z - 5)(z - 5)' + 21 - 25 = 0
|z - 5| = 2
(b) Method 1:
|(z - 1)/(z - 4)| < 2
z^2 - (z + z') + 1 < 4[z^2 - 4(z + z') + 16]
3z^2 - 15(z + z') + 63 > 0
z^2 - 5(z + z') + 21 > 0
(z - 5)(z - 5)' + 21 - 25 > 0
|z - 5| > 2
So, the shaded area is the outside region of the circle |z - 5| = 2
Method 2 :
Sub. 6 into |(z - 1)/(z - 4)| = 5/2 = 2.5 > 2.
Since 6 is in |z - 5| = 2, we conclude that the shaded area is the outside region of the circle |z - 5| = 2.