integration

2012-03-08 2:56 am
∫xlnx dx = ?
要steps plz

回答 (3)

2012-03-08 3:09 am
✔ 最佳答案
∫xlnxdxLet u=lnx, du=dx/x.Let dv=xdx, v=x²/2.By ∫udv=uv-∫vdu, ∫xlndx=(lnx)(x²/2)-∫(x²/2)(dx/x)=x²lnx/2-(1/2)∫xdx=x²lnx/2-(x²/2)/2=x²lnx/2-x²/4=(2x²lnx-x²)/4=x²(2lnx-1)/4
參考: I Hope This Can Help You ! ^_^ ( From Me )
2012-03-12 3:06 am
∫xlnxdx Let u=lnx, du=dx/x. Let dv=xdx, v=x²/2. By ∫udv=uv-∫vdu, ∫xlndx =(lnx)(x²/2)-∫(x²/2)(dx/x) =x²lnx/2-(1/2)∫xdx =x²lnx/2-(x²/2)/2 =x²lnx/2-x²/4 =(2x²lnx-x²)/4 =x²(2lnx-1)/4
2012-03-08 4:29 am
參考: Wolfram Alpha


收錄日期: 2021-04-13 18:33:45
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120307000051KK00541

檢視 Wayback Machine 備份