微分教學兩題

2012-03-06 6:19 pm
大大我會基本的微分

那這兩題該怎麼微

1.f(x)=[x(x-1)(x-2)]/(x-5) f(0)一次微分

2.y=(x-47)/(x+1) y(1)一次微分
更新1:

三位大大都很棒 to 螞蟻雄兵 解法跟我的教科書上面的很類似我比較容易看懂 to rex 你的解法我們好像後面一點會上到(偷翻一下) 謝謝提前幫我預習了 那解法就先謝謝了

回答 (3)

2012-03-06 7:01 pm
✔ 最佳答案
1.f(x)=[x(x-1)(x-2)]/(x-5),f(0)一次微分
Sol
依題意f(0)一次微分為0,改為求f’(0)
f’(0)=lim(x->0)_[f(x)-f(0)]/x
=lim(x->0)_[x(x-1)(x-2)/(x-5)-0]/x
=lim(x->0)_(x-1)(x-2)/(x-5)
=2/5

2.y=(x-47)/(x+1),y(1)一次微分
Sol
依題意y(1)一次微分為0,改為求y’(1)
y’(1)=lim(x->1)_[y(x)-y(1)]/(x-1)
=lim(x->1)_[(x-47)/(x+1)-(1-47)/2]/(x-1)
=lim(x->1)_[(x-47)/(x+1)+23]/(x-1)
=lim(x->1)_[(x-47)+23(x+1)]/[(x+1)(x-1)]
=lim(x->1)_(24x-24)/[(x+1)(x-1)]
=lim(x->1)_24/(x+1)
=12

2012-03-06 8:08 pm
連乘或是連除的函數 我習慣取對數

1.f(x)=x(x-1)(x-2)/(x-5)
ln[f(x)]=ln(x)+ln(x-1)+ln(x-2)-ln(x-5)~再微分
f '(x)/f(x)=1/x+1/(x-1)+1/(x-2)-1/(x-5)
f '(x)=f(x)*[1/x+1/(x-1)+1/(x-2)-1/(x-5)]
=(x-1)(x-2)/(x-5)+x(x-2)/(x-5)+x(x-1)/(x-5)-x(x-1)(x-2)/(x-5)^2
f '(0)=-2/5
~這個方法有個好處是後面含有x的項都是零

2.y=(x-47)/(x+1)~同樣方法
ln(y)=ln(x-47)-ln(x+1)
y'/y=1/(x-47)-1/(x+1)
y'=y*[1/(x-47)-1/(x+1)]=1/(x+1)-(x-47)/(x+1)^2
y'|x=1=1/2-(-46)/4
=24/2=12

此外這個方法再遇見更多項時很好用

例如f(x)=x(x-1)(x-2)....(x-9)(x-10) 求 f '(1)~這要用傳統微分就很頭痛
但是用對數就方便多了

f '(x)=f(x)*[ln(x)+ln(x-1)+...ln(x-10)]
=(x-1)(x-2)..(x-10)+x(x-2)....(x-10)+........+x(x-1)..(x-9)~除了劃線項外都是零
f '(1)=1(-1)(-2)....(-9)=-9!

2012-03-06 6:47 pm
1. f '(x) = { (x-5)[(x-1)(x-2)+x(x-2)+x(x-1)] - x(x-1)(x-2) } / (x-5)^2
=[(x-5)(x^2-3x+2+x^2-2x+x^2-x) - (x^3-3x^3+2x)] / (x-5)^2
=[(x-5)(3x^2-6x+2)-(x^3-3x^3+2x)] / (x-5)^2
f '(0) = [(-5)(2)-0] / (-5)^2 = -2/5

2. y ' = (x+1)*1-1*(x-47) / (x+1)^2
=48/(x+1)^2
y '(1)=48/2^2=48/4=12

2012-03-06 10:50:30 補充:
[x(x-1)(x-2)]微分=x ' (x-1)(x-2)+x(x-1) ' (x-2)+ x(x-1)(x-2) '
f(x)/g(x)微分=g(x)f '(x) - g '(x)f(x) / [g(x)]^2
參考: me


收錄日期: 2021-04-30 16:32:37
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120306000015KK01828

檢視 Wayback Machine 備份