M1數學題一問?10點

2012-03-06 4:17 am
/(1/v + 1/(2-v))dv

點變lnv-ln(2-v) + C
更新1:

why ʃ 1/(2-v) = ln(2-v)(-1) +C

更新2:

ʃ 1/(2-v) = ln(2-v)(-1) +C (-1)點出

回答 (3)

2012-03-06 3:56 pm
✔ 最佳答案
For ∫ dv/(2 -v).
By Substitution method, let 2 - v = u, so d(2 - v) = du = - dv. Or dv = - du.
So the integral becomes ∫ - du/u = - ln u = = - ln ( 2 - v) + C.
2012-03-06 4:47 pm
Note that the most proper ans should not miss the absolute sign, i.e.

ʃdx/x = ln |x| + C

So for ʃdv/v, unless we are sure that v is positive, the ans should be ln |v| + C

Similar judgement for ʃdv/(2 - v)
2012-03-06 4:28 am
ʃ (1/v + 1/(2-v))dv

= lnv-ln(2-v) + C

ʃ 1/x dx = lnx +C

ʃ 1/(2-v) = ln(2-v)(-1) +C


收錄日期: 2021-04-23 20:44:51
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120305000051KK00698

檢視 Wayback Machine 備份