Matrix and Determinant

2012-03-05 2:10 am
For a 3 x 3 square matrix A, prove that A^2 = A only if A = I or A is singular. (If not true, please give an example).

回答 (2)

2012-03-05 4:06 am
✔ 最佳答案
Solution:

det(A^2) = det(A)

det(A) = 0 or 1

If det(A) = 0, A is singular.

If det(A) = 1, it has inverse A^(-1). So,

A^2 = A => A = I

This proves that A^2 = A only if A = I or A is singular.
2012-03-05 2:22 am
A^2 = A
<=> A^2 - A = 0
<=> A(A-I) = 0
<=> A=I or A=0
參考: myself


收錄日期: 2021-04-26 19:17:46
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120304000051KK00654

檢視 Wayback Machine 備份