✔ 最佳答案
設 f(x) = Q(x) * (x - 2)³ + 3x
則
f(x) - 2x
= Q(x) * (x - 2)³ + x
= Q(x) * (x - 1 - 1)³ + x
= Q(x) * ( (x - 1)³ - 3(x - 1)² + 3(x - 1) - 1 ) + x 可被 (x - 1)² 整除。
故 Q(x) * ( 3(x - 1) - 1 ) + x
= Q(x) * (3x - 4) + x 可被 (x - 1)² 整除。
由因式定理 , Q(1) * (3 - 4) + 1 = - Q(1) + 1 = 0
即 Q(1) = 1
故可令 Q(x) = kx - k+1 , (k是待定係數)
則
Q(x) * (3x - 4) + x
= (kx - k+1) * (3x - 4) + x
= (k(x - 1) + 1) * (3(x - 1) - 1) + x
= 3k(x - 1)² + (3 - k)(x - 1) + (x - 1)
= 3k(x - 1)² + (x - 1)(4 - k) 可被 (x - 1)² 整除。
令 k = 4 消去 (x - 1) 項即可。
∴ Q(x) = kx - k+1 = 4x - 3
從而
f(x)
= Q(x) * (x - 2)³ + 3x
= (4x - 3)(x - 2)³ + 3x
= (4x - 3) (x³ - 6x² + 12x - 8) + 3x
= 4x⁴+ (-3 - 6*4 )x³ + (-3*-6 + 4*12)x² + (-3*12 + 4*-8)x + (-3*-8) + 3x
= 4x⁴- 27x³ + 66x² - 65x + 24 為次數最低的多項式。