✔ 最佳答案
一.
[OH^-] = 2.3 x 10^-2 M
pOH = -log(2.3 x 10^-2) M = 1.64
pH = 14 - 1.64 = 12.36
二.
設弱酸為 HA。
HA(aq) ⇌H^+(aq) + A^-(aq)
平衡時:pH = 3
[H^+] = (10)^(-pH) = 0.001 M
[A^-] = [H^+] = 0.001 M
[HA] = 0.1 - 0.001 = 0.099 M
Ka = [H^+][A^-]/[HA] = (0.001)^2/(0.099) = 1.01 x 10^-5 (M)
三.
(1)
HA(aq) ⇌H^+(aq) + A^-(aq)
平衡時:
設[H^+] = [A^-] = y M
則[HA] = (0.1 - y) M
KHA = y^2/(0.1 - y) = 1 x 10^-5
y^2 + (1 x 10^-5)y - (1 x 10^-6) = 0
解方程得 y = 9.95 x 10^-4
pH = -log(9.95 x 10^-4) = 3
(2)
設加入 n mol NaOH 後,pH 改變 1,上升至 pH 4。
忽略 HA的解離。HA 與 NaOH 的反應:
HA + NaOH → NaA + H2O
反應後:
生成 A^- 的莫耳數 = n mol
剩餘 HA 的莫耳數 = 0.1 x (100/1000) - n = (0.01 - n) mol
在同一溶液中,[HA]o/[A^-]o = (0.01 - n)/n
考慮 HA的解離:
HA(aq) ⇌H^+(aq) + A^-(aq)
KHA = [H^+][A^-]/[HA]
pH = pKHA - log{[HA]/[A^-]} ≈ pKHA - log{[HA]o/[A^-]o}
4 = -log(1 x 10^-5) - log{(0.01 - n)/n}
log{(0.01 - n)/n} = 1 = log10
(0.01 - n)/n = 10
0.01 - n = 10n
11n = 0.01
n = 9.09 x 10^-4
加入 NaOH的莫耳數 = 9.09x 10^-4 (mol)