Derive the infinite product representation of Cos(x) from?

2012-02-25 5:44 am
The classic infinite product representation of Cos(x) is:

Cos(x) = Π (n = 1 to ∞) ( 1 - 4x² / π²(2n-1)² )

From this, can you derive:

Cos(x) = Π (n = 1 to ∞) ( Π (n = 1 to ∞) ( (π²n² - 4x²) / (π²n² - x²) )

回答 (1)

2012-02-25 8:56 am
✔ 最佳答案
Using solely the second relation,
sin x = x Π ( 1 - x^2 / (πn)^2 ) = x Π ( (πn)^2 - x^2) ) / (πn)^2
sin 2x = 2x Π ( 1 - 4x^2 / (πn)^2 ) = 2x Π ( (πn)^2 - 4x^2) ) / (πn)^2
Taking the ratio of the above two equations, we get
Π Π ( (πn)^2 - 4x^2) ) / ( (πm)^2 - x^2) ) = (sin(2x)/2) / sin x = (sin x cos x) / sin x = cos x.


收錄日期: 2021-04-11 20:48:08
原文連結 [永久失效]:
https://answers.yahoo.com/question/index?qid=20120224214410AAaaHFP

檢視 Wayback Machine 備份