MQ15---Trigonometry

2012-02-13 9:21 pm
If n is a integer, prove that:[(1+sinx+icosx)/(1+sinx-icosx)]^n=cos(nπ/2-nx)+isin(nπ/2-nx)

回答 (1)

2012-02-13 10:00 pm
✔ 最佳答案
Since
(1 + sin x + i cos x) / (1 + sin x - i cos x)
= [1 + cos (π/2 - x) + i sin (π/2 - x)] / [1 + cos (π/2 - x) - i sin (π/2 - x)]
= [2 cos ^2 (π/4 - x/2) + 2i sin (π/4 - x/2) cos (π/4 - x/2)] / [2 cos ^2 (π/4 - x/2) - 2i sin (π/4 - x/2) cos (π/4 - x/2)]
= [cos (π/4 - x/2) + i sin (π/4 - x/2)] / [cos (π/4 - x/2) - i sin (π/4 - x/2)]
= cos (π/2 - x) + i sin (π/2 - x)
Therefore,
[(1 + sin x + i cos x) / (1 + sin x - i cos x)]^n
= [cos (π/2 - x) + i sin (π/2 - x)]^n
= cos (nπ/2 - nx) + i sin (nπ/2 - nx)


收錄日期: 2021-04-13 18:31:52
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120213000051KK00285

檢視 Wayback Machine 備份