F4 Equation of Staright Lines

2012-02-08 2:14 am
19. A straight line passing through (1,2) cuts the positive axes as shown. If the x-intercepts of the straight line is twice its y-intercepts, find the equation of the straight line.
20. A straight line L cuts the x-axis and y-axis at points A and B respectively such that AB=10 units. Find the possible equation of L.

*Please answer these question with complete step*
*-* Thank you!!

回答 (1)

2012-02-10 6:54 am
✔ 最佳答案
19.
Let b be the y-intercept. (b > 0)
Then, the x-intercept = 2b

The st. line passes through the point (2b, 0), (1, 2) and (0, b).

Slope of the st. line.
(2- 0)/(1 - 2b) = (2 - b)/(1 - 0)
2/(1 - 2b) = (2 - b)
(1 - 2b)(2 - b) = 2
2b² - 5b + 2 = 2
2b² - 5b = 0
b(2b - 5) = 0
b = 0 (rejected for b > 0) or b = 5/2

The st. line passes through the point (1, 2) and (0, 5/2).
Hence, equation of the st. line :
y - 2 = {[2 - (5/2)]/(1 - 0)} (x - 1)
y - 2 = (-1/2)(x - 1)
2(y - 2) = -(x - 1)
2y - 4 = -x + 1
x + 2y - 5 = 0


=====
20.
Let A = (a, 0) and (0, b)

AB = 10
√[(a - 0)² + (0 - b)²] = 10
√(a² + b²) = 10
a² + b² = 100

There are infinite solutions.

One of the solutions is that : a = 6 and b = 8
The st. line passes through A(6, 0) and B(0, 8)
y - 0 = [(0 - 8)/(6 - 0)] (x - 6)
y = (-4/3)(x - 6)
3y = -4x + 24
4x + 3y - 24 = 0

One more of the solutions is that : a = 8 and b = 6
The st. line passes through A(8, 0) and B(0, 6)
y - 0 = [(0 - 6)/(8 - 0)] (x - 8)
y = (-3/4)(x - 8)
4y = -3x + 24
3x + 4y - 24 = 0
參考: 土扁


收錄日期: 2021-04-13 18:31:18
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120207000051KK00665

檢視 Wayback Machine 備份