F.5 DEFINITE INTEGRATION 1條

2012-02-05 7:29 am
圖中的27題

希望有師兄能解答一下!謝謝

http://imageshack.us/photo/my-images/804/img1699k.jpg/

回答 (3)

2012-02-05 7:55 am
✔ 最佳答案
a) cos 2x/(sin2 x cos2 x) = 4 cos 2x/(4 sin2 x cos2 x)

= 4 cos 2x/sin2 2x

= 4 (1/sin 2x) (cos 2x/sin 2x)

= 4 csc 2x cot 2x

b) ∫(x = π/6 → π/3) cos 2x/(sin2 x cos2 x) dx

= ∫(x = π/6 → π/3) 4 csc 2x cot 2x dx

= - 4 [csc 2x] (x = π/6 → π/3)

= [csc 2x] (x = π/3 → π/6)

= csc π/3 - csc 2π/3

= 4/√3 or (4√3)/3

2012-02-04 23:56:42 補充:
b) Ans should be

4(csc π/3 - csc 2π/3)

= 4(2/√3 - 2/√3)

= 0
參考: 原創答案
2012-02-07 5:03 am
Q) F.5 DEFINITE INTEGRATION 1條圖中的27題

希望有師兄能解答一下!謝謝

http://imageshack.us/photo/my-images/804/img1699k.jpg/ A)a) cos 2x/(sin2 x cos2 x) = 4 cos 2x/(4 sin2 x cos2 x)

= 4 cos 2x/sin2 2x

= 4 (1/sin 2x) (cos 2x/sin 2x)

= 4 csc 2x cot 2x

b) ∫(x = π/6 → π/3) cos 2x/(sin2 x cos2 x) dx

= ∫(x = π/6 → π/3) 4 csc 2x cot 2x dx

= - 4 [csc 2x] (x = π/6 → π/3)

= [csc 2x] (x = π/3 → π/6)

= csc π/3 - csc 2π/3

= 4/√3 or (4√3)/3 b) Ans should be

4(csc π/3 - csc 2π/3)

= 4(2/√3 - 2/√3)

= 0
希望幫到你
2012-02-05 8:21 am
part b) should be :

∫(x = π/6 → π/3) cos 2x/(sin2 x cos2 x) dx

= ∫(x = π/6 → π/3) 4 csc 2x cot 2x dx

= ∫(x = π/6 → π/3) 2 csc 2x cot 2x d2x

= - 2[csc 2x] (x = π/6 → π/3)

= 2[csc 2x] (x = π/3 → π/6)

= 2[csc 2π/3 - csc 2π/6]

= 2[2/√3 - 2/√3]

= 0 ..... ans


收錄日期: 2021-04-13 18:30:44
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120204000051KK00989

檢視 Wayback Machine 備份