✔ 最佳答案
1.
x^2 + 2ysinx - y^2 = 0
(d/dx)( x^2 + 2ysinx - y^2) = (d/dx)0
2x + 2ycosx + 2sinx(dy/dx) - 2y(dy/dx) = 0
2y(dy/dx) - 2sinx(dy/dx) = 2x + 2ycosx
(2y - 2sinx)(dy/dx) = 2x + 2ycosx
dy/dx = (2x + 2ycosx)/(2y - 2sinx)
在 P(π, -π),dy/dx
= (2*π + 2*π*cosπ)/[2*(-π) - 2*sinπ]
= (2π + 2π*1)/[-2π - 2*0]
= (4π)/(-2π)
= -2
2.
(a)
y = (1/2)(e^x + e^-x)
dy/dx = (1/2)(e^x - e^-x)
當x = ln2 時,dy/dx
= (1/2)[e^ln2 - e^(-ln2)]
= (1/2)[2 - (1/2)]
= 3/4
當 x = ln2 時,y
= (1/2)[e^ln2 + e^(-ln2)]
= (1/2)[2 + (1/2)]
= 5/4
因此,在(ln2, 5/4) 上切線的斜率為3/4。
該切線的方程:
y - (5/4) = (3/4)(x - ln2)
4[y - (5/4)] = 3(x - ln2)
4y - 5 = 3x - 3ln2
3x - 4y + 5 - 3ln2 =0
(b)
C 的水平切線的斜率:
(1/2)(e^x - e^-x) = 0
e^x = e^-x
x = -x
2x = 0
x = 0
當 x = 時,y = (1/2)(e^0 + e^-0) = 1
C 的水平切線的切點為(0, 1),斜率為0。
該切線的方程:
(y - 1) = 0(x - 0)
y - 1 = 0
y = 1
3.
因所求切線與x + 4y + 1 = 0 平行,
所求切線的斜率 = -1/4
x^2 + xy + 2y^2 = 8
(d/dx)(x^2 + xy + 2y^2) = (d/dx)8
2x + x(dy/dx) + y + 4y(dy/dx) = 0
(x + 4y)(dy/dx) = -(2x + y)
dy/dx = -(2x + y)/(x + 4y)
所求切線的斜率:
-(2x + y)/(x + 4y) = -1/4
4(2x + y) = x + 4y
8x + 4y = x + 4y
7x = 0
x = 0
當 x = 0 :
(0)^2 + (0)y + 2y^2 = 8
y^2 = 4
y = 2 或y = -2
在 (0, 2) 上的切線方程:
y - 2 = (-1/4)(x - 0)
4(y - 2) = -x
4y - 8 = -x
x + 4y - 8 = 0
在 (0, -2) 上的切線方程:
y + 2 = (-1/4)(x - 0)
4(y + 2) = -x
4y + 8 = -x
x + 4y + 8 =0
2012-02-04 19:04:27 補充:
3. 的另一方法:
因所求切線與 x + 4y + 1 = 0 平行,
所求切線的斜率 = -1/4
所求切線:y = (-1/4)x + c
4y = -x + 4c
x = -4y + 4c
把 x = -4y + 4c 代入 x² + xy + 2y² = 8 中:
(-4y + 4c)² + (-4y + 4c)y + 2y² = 8
16y² - 32cy + 16c² - 4y² + 4cy + 2y² = 8
14y² - 28cy + (16c² - 8) = 0
2012-02-04 19:04:47 補充:
由於是切線,判別式 Δ = 0
(-28c)² - 4*14*(16c² - 8) = 0
784c² - 896c² + 448 = 0
112c² = 448
c² = 4
c = 2 或 c = -2
當 c = 2,所求切線之方程 :
y = (-1/4)x + 2
4y = -x + 8
x + 4y - 8 = 0 ...... (答案)
當 c = -2,所求切線之方程 :
y = (-1/4)x - 2
4y = -x - 8
x + 4y + 8 = 0 ...... (答案)