Maths olympiad (Geometry)

2012-02-03 3:04 am
In isos. triangle ABC,AC=BC,D is the point on AB such that AD=DB,
E is the point on BC ,
such that AE is the angle bisector of angle CAB
,AE=2CD ,find angle B ,with proof.
更新1:

Thanks 回答者: ☂雨後陽光☀ ( 知識長 )

回答 (1)

2012-02-03 4:49 am
✔ 最佳答案

圖片參考:http://imgcld.yimg.com/8/n/HA04628698/o/701202020069713873434060.jpg


Let DF // AE , then
ㄥEAB = ㄥFDB = ㄥB/2

△AEB ~ △DFB ,
by mid-point theorem , DF = AE/2 = CD

So △CDF is an issos. △ ,
we have
ㄥDCF
= ㄥDFC
= ㄥFDB + ㄥFBD
= ㄥB/2 + ㄥB

By ㄥsum of △ ,
ㄥDCF + ㄥB + ㄥCDB = 180°
(ㄥB/2 + ㄥB) + ㄥB + 90° = 180°
ㄥB = 18°







2012-02-02 20:51:15 補充:
Sorry , it should be ㄥB = 36°.


收錄日期: 2021-04-21 22:26:54
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120202000051KK00697

檢視 Wayback Machine 備份