✔ 最佳答案
10.
(a)
在 ΔBFC 中:
cos60° = FC/BF
FC = BF cos60°
FC = BF x (1/2)
FC = BF/2
在 ΔAFB 中:
cos45° = BF/AF
AF = BF/cos45°
AF = BF/(1/√2)
AF = BF√2
(b)
在 ΔAFC 中:
sinθ = FC/AF
sinθ = (BF/2)/(BF√2)
sinθ = 1/(2√2)
θ = 20.7°
11.
(a)
設 M 為 BC 中點。連 AM。
由於 ∠ABC = ∠ACB,故 AM 為 BC 的垂直平分線。
BM = CM = 1/2 m = 0.5 m
在 ΔABM 中:
cos∠ABM = BM/AB
cos70° = (0.5 m)/AB
AB = cos70°/0.5 m
AB = 1.46 m
(b)
在 ΔABM 中:
tan∠ABM = AM/BM
tan70° = AM/(0.5 m)
AM = 0.5 tan70°
在 ΔACM 中:
∠MAC + ∠AMC + ∠ACM = 180° (Δ內角和)
∠MAC + 90° + 70° = 180°
∠MAC = 180°
在 ΔAMD 中:
∠MAD = ∠MAC + ∠CAD
∠MAD = 20° + 20°
∠MAD = 40°
在 ΔAMD 中:
tan∠MAD = MD/AM
MD = AM•tan∠MAD
MD = 0.5 tan70° tan40° m
BD = BM + MD
BD = (0.5 + 0.5 tan70° tan40°) m
BD = 1.65 m
另一方法(使用正弦定律):
∠ADB + ∠CAD = ∠ACB (ΔACD 外角)
∠ADB + 20° = 70°
∠ADB = 50°
∠BAD + ∠ABD + ∠ADB = 180°
∠BAD + 70° + 50° = 180°
∠BAD = 60°
在 ΔABD 中:
BD/sin∠BAD = AB/sin∠ADB
BD/sin60° = (1.46 m)/sin50°
BD = 1.46 sin60°/sin50° m
BD = 1.65 m
12.
(a)
在 ΔBAP 中:
tan∠BPA = BA/PA
tan60° = (h m)/PA
PA = h/tan60° m
在 ΔCDP 中:
tan∠CPD = CD/PD
tan45° = (h m)/PD
PD = h/tan45° m
在 ΔAPD 中:
cos∠APD = PA/PD
cos∠APD = (h/tan60°)/(h/tan45°)
cos∠APD = 1/tan60°
∠APD = 54.7°
由 P 測得 C 之方位 = N 54.7° E
(b)
在 ΔCDP 中:
PD² = AD² + PA²
AD² = PD² - PA²
AD² = [(h/tan45°)² + (h/tan60°)²] m²
AD² = [h² - (h²/3)] m²
AD² = 2h²/3 m²
AD = (√2)h/√3m
AD = (√6)h/3 m
(c)
h = 1500
AD = (1500√6)/3 m
AD = 500√6 m
t = 40
u = (500√6)/40
u = (25√6)/2
u = 30.6