兩題數學的向量的問題....
回答 (3)
第2題可以取BD的法向量*根號3
之後中點加上(BD的法向量*根號3) 即為一解
1.
a=[Cosθ,Sin(θ+π/6)]
|a|^2=Cos^2 θ+Sin^2 (θ+π/6)
4|a|^2=4Cos^2 θ+4Sin^2 (θ+π/6)
=2+2Cos(2θ)+2-2Cos(2θ+π/3)
=4+2Cos(2θ)-2Cos(2θ)Cos(π/3)+2Sin(2θ)Sin(π/3)
=4+2Cos(2θ)-Cos(2θ)+√3Sin(2θ)
=4+Cos(2θ)+√3Sin(2θ)
=4+2[1/2*Cos(2θ)+√3/2*Sin(2θ)]
=4+2[Sin(π/6)*Cos(2θ)+Cos(π/6)*Sin(2θ)]
=4+2Sin(π/6+2θ)
0<=θ>=2π
0<=2θ>=4π
π/6<=2θ+π/6<25π/6
2θ+π/6=π/2 or 2θ+π/6=5π/2
θ=π/6 or θ=7π/6
when θ=π/6 or θ=7π/6
4|a|^2=4+2=6
|a|=√3/2
2
Sol
C(p,q),AB中點D(1,0.5)
AB直線方程式:(y+1)/(x-3)=(-1-2)/(3+1)
3x+4y=5
CD直線方程式:4X-3Y=4*1-3*0.5=2.5
8x-6y=5
8x=6y+5
AB^2=4^2+3^2=25
AC^2=(p-3)^2+(q+1)^2=25
64(p-3)^2+64(q+1)^2=1600
(8p-24)^2+(8q+8)^2=1600
(6q+5-24)^2+(8q+8)^2=1600
36q^2-228q+361+64q^2+128q+64=1600
100q^2-100q-1175=0
4q^2-4q-47=0
q=(4+/-√(16+752))/8=(4+/-√768)/8=(4+/-16√3)/8=(1+/-4√3)/2
(1) q=(1+4√3)/2
8p=6q+5=3+12√3+5=8+12√3
p=(2+3√3)/2
C((2+3√3)/2,(1+4√3)/2)
(2) q=(1-4√3)/2
8p=6q+5=3-12√3+5=8-12√3
p=(2-3√3)/2
C((2-3√3)/2,(1-4√3)/2)
收錄日期: 2021-05-02 10:38:36
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20111227000010KK00453
檢視 Wayback Machine 備份