F.4 maths

2011-12-24 5:49 pm
If f(x)=2^x-k*2^-x and 2f(1)=3,find
(a) the value of k;
(b) the value of x such that f(x)=63/8

回答 (2)

2011-12-24 7:07 pm
✔ 最佳答案
(a). ______________2f(1)=3____________________f(1)=3/2____Sub. x=1 into___f(x)=2^x-2^(-x)k_____________________3/2=2-k/2_____________________k/2=1/2_______________________k=1(b).__ _f(x)=2^x-2^(-x)=63/8________________2^x-63/8=1/(2^x)_ _ _ (2^x)²-(63/8)(2^x)=1_ _ (2^x)²-(63/8)(2^x)-1=0_ _ _ _ (2^x-8)(2^x+1/8)=0
___________________2^x-8=0or 2^x+1/8=0_____________________2^x=8or 2^x=-1/8(rej.)_______________________x=∛8_______________________x=3___
參考: Hope I Can Help You ! ^_^ ( From Me )
2011-12-25 6:41 am
a
f(x)=2^x-k*2^-x 2f(1)=3
2f(1)=2(2^1-k*2^-1)
3=4-k
k=1

b
f(x)=2^x-1*2^-x
63/8=2^x-2^-x
63/8=2^x-1/(2^x)
63=2^3(2^x-1/2^x)
64-1=2^3[2^x-1/(2^x)]
2^6-2^0=2^(3+x)-2^(3-x)
-2^0=2^(3+x)-2^(3-x)-2^6
2^0=-2^(3+x)+2^(3-x)+2^6
2^0=-2^3(2^x-2^-x-2^3)
-2^-3=2^x-2^-x-2^3
0=2^x-2^-x
2^-x=2^x
-x=x
0=2x
x=0


收錄日期: 2021-04-13 18:26:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20111224000051KK00113

檢視 Wayback Machine 備份