數學知識交流 - 代數式(數論)難題 (2)

2011-12-20 4:21 am
k 是一常數,滿足 (a+b) + k = ab,已知 ab + (a+b) < 2k,

(1) 試以 a , b 表示 k。
(2) 求 a , b 的取值範圍。
更新1:

格式需為 當 a > ... , b < ... 當 a < ... , ... < b < ... 001, 當 -3 ≦ a ≦ 3 時,... ...

更新2:

當 -3 < or = a < or = 3 , ...

更新3:

當 -3 < a < 3 , ...

回答 (1)

2011-12-20 5:45 am
✔ 最佳答案
(1) (a+b)+k = ab => k = ab – a – b(2) ab+(a+b)<2k=>ab+(a+b)<2(ab – a – b)=>0 < ab – 3a – 3b=>9 < ab – 3a – 3b+9=(a – 3)(b – 3)因此(a – 3)及(b – 3)必須為同時大於或小於0即a,b同時大於3或同時小於3

2011-12-20 19:49:04 補充:
(a-3)(b-3)>9
當a>3時b>3+9/(a-3)
當a<3時b<3+9/(a-3)

2011-12-20 21:33:04 補充:
a and b can never be = 3.
The graphical representation of the probable values are as shown (x-axis is a, y-axis is b):
http://i1090.photobucket.com/albums/i376/Nelson_Yu/int-2126.jpg

2011-12-20 21:34:46 補充:
I do not see -3 <= a <= 3 is a meaningful range...


收錄日期: 2021-04-24 10:16:16
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20111219000051KK00643

檢視 Wayback Machine 備份