m2 limits

2011-12-13 2:04 am
1.lim x ->infinity ((x-7)/(x-5))^x
ans: e^-2

2.lim x ->-1 {sin(x+1)}/(x^2-1)
ans: -1/2

3.lim x ->infinity xln(1+5/x+6/x^2)
ans: 5

4. lim x ->infinity {[(x+4)(1+2/x-15/x^2)]/x}^x
ans: e^6



plz show steps ,不能使用L HOSIPITAL RULE

回答 (2)

2011-12-13 3:02 am
✔ 最佳答案
1) [(x - 7)/(x - 5)]^x = [1 - 2/(x - 5)]^x. Let x - 5 = y, so x = y + 5
so it is changed to lim y tends to infinity of (1 - 2/y)^(y + 5)
= (1 - 2/y)^y (1 - 2/y)^5.
= e^(-2)(1^5) = e^(-2).
2)
sin (x + 1)/(x^2 - 1). Let x + 1 = y, so when x tends to - 1, y tends to 0.
so it changed to sin y/[(x+ 1)(x - 1)] = sin y/[y(y - 2)] = (sin y/y)[1/(y - 2)]
= (1)[1/(0 - 2)] = - 1/2.
3)
x ln ( 1 + 5/x + 6/x^2) = ln [1 + 5/x + 6/x^2]^x.
(1 + 5/x + 6/x^2) = (x^2 + 5x + 6)/x^2 = (x + 2)(x + 3)/x^2
= [(x + 2)/x][(x + 3)/x] = (1 + 2/x)(1 + 3/x)
so (1 + 5/x + 6/x2)^x = (1 + 2/x)^x(1 + 3/x)^x
so limit when x tends to infinity = ln (e^2)(e^3) = ln e^2 + ln e^3 = 2 + 3 = 5.
4)
(1 + 2/x - 15/x^2) = (x^2 + 2x - 15)/x^2 = (x +5)(x - 3)/x^2
so [(x + 4)(1 + 2/x - 15/x^2)]/x = (x + 4)(x + 5)(x - 3)/x^3
= [(x + 4)/x][(x + 5)/x][(x - 3)/x] = (1 + 4/x)(1 + 5/x)(1 - 3/x)
So similar to (3) above, limit = (e^4)(e^5)(e^ - 3) = e^6.


收錄日期: 2021-04-13 18:24:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20111212000051KK00492

檢視 Wayback Machine 備份