✔ 最佳答案
1. Let PQ = x and a be the angle between PQ and the vertical, then
x^2 = (3 + 3 cos a)^2 + (9 - 3 sin a)^2
Differentiate both sides w.r.t. t,
2 x (dx/dt) = 2 (3 + 3 cos a) (-3 sin a) (da/dt) + 2 (9 - 3 sin a) (-3 cos a) (da/dt)
ie. x (dx/dt) = - 9 sin a (1 + cos a) (da/dt) - 9 cos a (3 - sin a) (da/dt)
When a = 0, x = sqrt (6^2 + 9^2) = 3 sqrt (13),
sin a = 0, cos a = 1, and as a is decreasing, so da/dt = -1.5, so
3 sqrt(13) (dx/dt) = -9 (3) (-1.5).
therefore, dx/dt = 3.74 cm/s
2. Let angle DAP = a, angle CBP = b, then
4 sqrt(3) = 3 tan a + 3 tan b
Differentiate both sides w.r.t. t,
(da/dt) (sec a)^2 + (db/dt) (sec b)^2 = 0
When a = pi/6, b = pi/3, sec(pi/6) = 2/sqrt(3), sec(pi/3) = 2, da/dt = 3, so
3 (4/3) + (db/dt) (4) = 0
therefore, db/dt = -1 rad/min