Infinite series(difficult)

2011-12-01 1:48 am
Evaluate ∑(k=-∞~∞) 1/(8k³+1)

試求∑(k=-∞~∞) 1/(8k³+1)

回答 (4)

2011-12-10 2:53 am
✔ 最佳答案
N Σ (2n - 1)^3 n=1 is the sum of the cubes of the first N odds. There are a couple different approaches to evaluating this. I think perhaps the simplest is to take the sum of the first 2N - 1 cubes, and subtract out the first N-1 even cubes. Note that 2N-1 Σ n^3 = (2N-1)²(2N)²/4 = N²(2N-1)² = N²(4N² - 4N + 1). n=1 The sum of the first N - 1 even cubes is N-1 Σ (2n)^3 = 8(N-1)²(N)²/4 = 2N²(N² - 2N + 1) n=1 So subtracting gives the sum N Σ (2n-1)^3 = N²(4N² - 4N + 1) - 2N²(N² - 2N + 1) = 2N^4 - N². n=1
參考: 我
2011-12-16 11:00 pm
It's so sorry! I chose a wrong solution. The correct answer is doraemonpaul's.
2011-12-13 6:06 pm

圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahooknowledge/infiniteseries/goodinfiniteseries9.jpg

參考資料:
my wisdom of maths + formula from http://mathworld.wolfram.com/RiemannZetaFunction.html#eqn51

2011-12-13 11:18:42 補充:
這題最困難的地方就是若直接把1/(8k³ + 1)進行部分分式會分拆出發散級數,因為Σ(k = a to ∞)P(k)/Q(k),其中deg(Q(k)) - deg(P(k)) ≤ 1,是恆為發散的。

因此我嘗試把兩邊的無限級數拆開,結果我砌出只有偶次項的有理函數級數,把它進行部分分式就可以分拆出收歛且較低次項的有理函數級數,問題就自然迎刃而解了。

2011-12-15 17:17:06 補充:
CRebecca,你是否有病?竟然選擇rio******那個垃圾回答做最佳解答?
2011-12-01 3:53 pm
π/6*[1+√3 sinh(√3 π/2)]/cosh(√3 π/2)


收錄日期: 2021-05-04 01:03:02
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20111130000051KK00518

檢視 Wayback Machine 備份