兩題數學問題(跟圓有關的)(20點!!)

2011-11-27 6:59 am
1.設S=﹛﹙x,y﹚︱﹙x+y﹚²+4(x+y)+3≦0﹜,T=﹝﹙x,y﹚︱x²+y²+2x+2y+1≦0﹞,則S∩T之區域面積=?
2.0°<θ<90°,求2÷cos²θ+8÷sin²θ的最小值?

回答 (2)

2011-11-27 8:46 am
1. 設S=﹛﹙x,y﹚︱(x+y)^2+4(x+y)+3≦0﹜,
T=﹝(x,y)︱x^2+y^2+2x+2y+1≦0﹞,則S∩T之區域面積=?
Sol
(x+y)^2+4(x+y)+3<=0
(x+y)^2+4(x+y)+4<=1
(x+y+2)^2-1^2<=0
(x+y+2-1)(x+y+2+1)<=0
(x+y+1)(x+y+3)<=0
x+y+1<=0,x+y+3>=0
S={(x,y)|x+y+1<=0,x+y+3>=0}
x^2+y^2+2x+2y+1<=0
(x^2+2x+1)+(y^2+2y+1)<=1
(x+1)^2+(y+1)^2<=1
T={(x,y)︱(x+1)^2+(y+1)^2<=1}
(-1,-1)至x+y+1=0距離=|-1-1+1|/√2=1/√2<1
(-1,-1)至x+y+3=0距離=|-1-1+3|/√2=1/√2<1
S∩T之區域面積
=π-2(π/4-1/2)
=π-π/2+1
=1+π/2

2. 0°<θ<90°,求2/Cos^2 θ+8/Sin^2 θ的最小值?
Sol
0°<θ<90°
0°<2θ<180°
0<Sin2θ<1
1/Sin2θ>1
2/Cos^2 θ>0,8/Sin^2 θ<0
(2/Cos^2 θ+8/Sin^2 θ)/2
=(2Sec^2 θ+8Csc^2 θ)/2
>=√(2Sec^2 θ*8Csc^2 θ)
=4Secθ*Cscθ
=8/Sin2θ
>=8
2/Cos^2θ+8/Sin^2 θ>=16




收錄日期: 2021-04-30 16:08:18
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20111126000010KK08043

檢視 Wayback Machine 備份