✔ 最佳答案
1. ax*2 + (ab+1)x + b = ax*2 +abx+x+b=x(ax+1) +b(ax+1)= (ax+1)(x+b) 2. x*2 + x +1/4 + yz – z*2 – y*2/4 = .( x*2 + x +1/4) - (z*2 - yz + y*2/4) = .[x*2 + 2x(1/2) +(1/2)*2 ] - [z*2 - 2(y/2)z + (y/2)*2]= (x+ 1/2)*2 - (z - y/2)*2= [(x+ 1/2) + (z - y/2)][(x+ 1/2) - (z - y/2)]= (x - y/2 + z + 1/2)(x + y/2 - z + 1/2) 3. (x + y ) *3 – (x – y ) *3
= [(x + y ) – (x – y )][(x + y ) *2 +(x + y )(x – y ) + (x – y ) *2]= (2y)(x*2+2xy +y*2 +x*2 -y*2 + x*2- 2xy +y*2 )= 2y(3x*2 + y*2) 4. x*3y*3 – 64 = (xy)*3 - 4*3
= (xy - 4)[(xy)*2 +(xy)(4) +4*2]
= (xy - 4)(x*2y*2 + 4xy + 16) 5. 81a*3 + 24b*3 = 3[(3a)*3 + (2b)*2] = 3(3a+2b)[(3a)*2 - (3a)(2b) +(2b)*2]= 3(3a+2b)(9a*2 -6ab +4b*2) 6. a*6 – b*6= (a*2)*3 - (b*2)*3 = [ (a*2) - (b*2)][(a*2)*2 +(a*2)(b*2) + (b*2)*2] = (a+b)(a-b)(a*4 + a*2b*2 + b*4)