✔ 最佳答案
∫ tan(x)tan(2x)tan(3x) dx
=∫ [2sin(3x)sin(x)sin(2x)]/[2cos(3x)cos(x)cos(2x)] dx
=∫ {[cos(2x)-cos(4x)]sin(2x)}/{[cos(4x)+cos(2x)]cos(2x)} dx
=(-1/2) ∫ (u-2u²+1)/[(2u²-1+u)u] du
=(1/2) ∫ [ 1/u + (2/3)/(u+1) -(4/3)/(2u-1) ] du
=(1/2)ln|cos(2x)| +(1/3)ln|cos(2x) +1 | - (1/3) ln| 2cos(2x)-1| + C