✔ 最佳答案
Put u = x²
x⁴ + 4x² + 3
= (x²)² + 4(x²) + 3
= u² + 4u + 3
= (u + 1)(u + 3)
= (x² + 1)(x² + 3)
Put f(x) = x⁴ - 4x³ + 4x² - 4x + 3
f(1) = (1)⁴ - 4(1)³ + 4(1)² - 4(1) + 3 = 0
f(3) = (3)⁴ - 4(3)³ + 4(3)² - 4(3) + 3 = 0
Hence, x - 1 and x - 3 are the factors of f(x).
(x - 1)(x - 3) = x² - 4x + 3
Using long division, (x⁴ - 4x³ + 4x² - 4x + 3) ÷ (x² - 4x + 3) = (x² + 1)
Hence, (x⁴ - 4x³ + 4x² - 4x + 3)
= (x² - 4x + 3)(x² + 1)
= (x - 1)(x -3)(x² + 1)
2011-11-18 23:33:19 補充:
Alternative method for Q.2 :
x⁴ - 4x³ + 4x² - 4x + 3
= (x⁴ - 3x³) - (x³ - 3x²) + (x² - 3x) - (x - 3)
= x³(x - 3) - x²(x - 3) + x(x - 3) - (x - 3)
= (x³ - x² + x - 1)(x - 3)
= [(x³ - x²) + (x - 1)] (x - 3)
= [x²(x - 1) + (x - 1)] (x - 3)
= (x² + 1)(x - 1)(x - 3) ...... (answer)