✔ 最佳答案
I(2n)
=∫x^2n sinx dx
=-∫x^2n dcosx
=-x^2n cosx+∫cosx d x^2n
=-x^2n cosx+2n∫cosx x^(2n-1)dx
=-x^2n cosx+2n∫x^(2n-1)dsinx
=-x^2n cosx+2nx^(2n-1) sinx - 2n∫sinx dx^(2n-1)
=-x^2n cosx+2nx^(2n-1) sinx - 2n(2n-1)∫sinx x^(2n-2)dx
=-x^2n cosx+2nx^(2n-1) sinx - I(2n-2)
=-x^2n cosx+2nx^(2n-1) sinx -[ -x^(2n-2)cosx + (2n-2)x^(2n-3)sinx - I(2n-4) ]
=-x^2n cosx+2nx^(2n-1) sinx + x^(2n-2)cosx - (2n-2)x^(2n-3)sinx + I(2n-4)
......
=cosx[-x^(2n)+2n(2n-1)x^(2n-2)-2n(2n-1)(2n-2)(2n-3)x^(2n-4)+2n(2n-1)...(2n-5)x^(2n-6)+...—2n(2n-1)...3x^2]+sinx[2nx^(2n-1)-2n(2n-1)(2n-2)x^(2n-3)+...+2n(2n-1)(2n-2)...2x]—2n!I(2) when n=2k+1 (k is N)
or
=cosx[-x^(2n)+2n(2n-1)x^(2n-2)-2n(2n-1)(2n-2)(2n-3)x^(2n-4)+2n(2n-1)...(2n-5)x^(2n-6)+...+2n(2n-1)...3x^2]+sinx[2nx^(2n-1)-2n(2n-1)(2n-2)x^(2n-3)+...-2n(2n-1)(2n-2)...2x]+2n!I(2) when n=2k (k is N)
=自己再計埋I(2)
第2題情況差不多,只不過有少少不同,所以在此不長列出來,因為打出來太麻煩啦...
maths is fun!!