急急急 Quadradic equation (20分)

2011-11-15 1:01 am
The fig. shows the graph of y = ax^2 + 2(a+1)x + a + 3

圖片參考:http://imgcld.yimg.com/8/n/HA05425562/o/701111140054213873401430.jpg


(a) Find the range of possible values of a

(b) Is it possible that the point P(-4, 4) lies on the graph? Explain

Answers:
(a) a>1
(b) No

回答 (3)

2011-11-15 1:15 am
✔ 最佳答案
a) Since the curve opens upward, the first condition is a > 0

Also since the curve does not touch the x-axis, the discriminant of the equation:

ax2 + 2(a + 1)x + (a + 3) = 0

should be negative, i.e.

4(a + 1)2 - 4a(a + 3) < 0

(a + 1)2 - a(a + 3) < 0

a2 + 2a + 1 - a2 - 3a < 0

-a + 1 < 0

a > 1

b) Sub x = 4 into the curve function:

y = 16a + 8(a + 1) + (a + 3)

= 25a + 11

since a > 1, y > 36 and so y = 4 is impossible
參考: 原創答案
2011-11-15 6:05 am
(a)Since the curve opens upward,
so a>0
y = ax^2 + 2(a+1)x + a + 3
y=a[x^2+2(a+1)/a]+a+3
y=a{x^2+2(a+1)/a+[(a+1)/a]^2-[(a+1)/a]^2}+a+3
y=a[x+(a+1)/a]^2-(a^2+2a+1)/a+a+3
y=a[x+(a+1)/a]^2+(a-1)/a
the minimun point is ( -(a+1)/a , (a-1)/a )
the figure shown that
for all y, y>0
so (a-1)/a >0
a-1>0
a>1

(b)
assume point (-4,4) lies on the graph
so
-4=16a-8(a+1)+a+3
9a-1=0
a=1/9
it conflict with (a) a>1
so point(-4,4) does not lies on the graph



2011-11-15 5:34 am


收錄日期: 2021-04-16 13:41:43
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20111114000051KK00542

檢視 Wayback Machine 備份