急 !急 ! 急 ! F4 Function 計法

2011-11-11 11:37 pm
請問以下幾條點計,要有詳細步驟 :

1. Given f(x) is a function of x where f(1+x)=f(1)+f(x), show that :
a) f(0)=0
b) f(-1)=-f(1)

2. Given f(x)=2x-1, solve the equation 2f(x)=f(x+1)


圖片參考:http://imgcld.yimg.com/8/n/HA00997022/o/701111110030813873400400.jpg

回答 (2)

2011-11-12 12:27 am
✔ 最佳答案
1a.
given f(1+x) = f(1)+f(x)
when x = 0, f(1+0) = f(1) + f(0)
=> f(0) = 0
1b.
when x=-1, f(1+(-1)) = f(1) + f(-1)
f(0) = f(1) + f(-1)
at 1a. f(0) = 0, thus f(-1) = - f(1)

2.
2f(x) = 2(2x-1) = 4x - 2
f(x+1) = 2(x+1) - 1 = 2x + 2
2f(x) = f(x+1)
4x-2 = 2x + 2
2x = 4
x = 2

10a.
quantity = 3000 - 100x
profit per toy = x - 20
total profit, P = (x-20)(3000-100x)
10b.
P = (x-20)(3000-100x) = -100x^2 + 5000x + 60000
d(P)/dx = P' = -200x + 5000
d(P')/dx = P'' = -200 < 0 => P will provide a maximum value when P' = 0
=> x = 25
10c.
when x = 25, quantity = 3000 - 100(25) = 500

11a.
q = 12000 - 50(p-160)
11b.
Income, I = p q = p [12000 -50(p-160)]
I = 20000p - 50p^2
d(I)/dp = I' = 20000 - 100p
d(I')/dp = I'' = -100 < 0 => I will provide a maximum value when I' = 0
=> p = 200
thus, I = 2,000,000

p.s. for a quadratic equation y = Ax^2 + Bx + C, the curve opens downwards when A < 0, such that a maximum value of y will get at x = -B/2A, and vice versa.


2011-11-15 17:44:09 補充:
Q. 請問第2題點解是f(x+1) = 2(x+1) - 1
而不是f(x+1) = 2x+1 - 1

A. f(x) = 2x - 1
=> f(z) = 2z - 1
put z = x+1 => f(x+1) = 2(x+1) - 1......ok??
2011-11-12 12:01 am
幫你係雅虎search過,唔知道以下網址幫不幫到您,應該有您想要的東西http://hk.search.yahoo.com/search;_ylt=Axt7wJQeLZ1OGAYAk5Ozygt.?p=comingzoo%E7%B6%B2%E4%B8%8A%E6%89%B9%E7%99%BC&fr2=sb-top&fr=FP-tab-web-t&rd=r1
 記住俾分我牙!
 


收錄日期: 2021-04-13 18:21:10
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20111111000051KK00308

檢視 Wayback Machine 備份