Interesting MathQ6(SUPER HARD)

2011-11-08 6:04 am
現有一個邊長為1cm的正立方體和一個半徑為1cm的球體。現在將那球體(以三刀,從上方切十字然後橫切一刀)切開八等份。然後將其中一份(八分一個球體)的一隻角(一個頂)、三條稜、三個平面,跟正立方體的裡面的一隻角(一個頂)、三條稜、三個平面,貼在一起。另外的那七份(八分一個球體)也用這個方法,跟正立方體的裡面貼在一起。現在問:那個被八個八分一球及正立方體同時覆蓋的空間的體積是多少?

以下這網址附上的圖片,是此3D難題的2D版本,希望這2D版本能令你更清楚3D難題。(無需解決2D版本)

http://s1099.photobucket.com/albums/g395/jasoncube/?action=view¤t=5ff042b0.jpg***You may either answer this Q in english or chinese.
***This Q caused me & my teacher few months. ENJOY! ^_^

回答 (4)

2011-11-11 11:15 pm
✔ 最佳答案
設正立方體邊長為2 (方便計算), 球半徑為2
以正立方體中心為(0,0,0), 則8頂點為(1, 1, 1),(1, 1, -1),(1, -1,1), (1, -1, -1)...
8個球的交集為A={ (x,y,z) | (x-a)²+(y-b)²+(z-c)² < 4, 其中a, b, c為 1 or -1}
考慮A的對稱性:
(1)對稱於xy, yz, zx平面 (求 x>0, y>0, z>0部分,即1st octant,再8倍即可)
(2)對稱於x=y(求1st octant,且x>y部分)
設B={ (x,y,z) | (x+1)²+(y+1)²+(z+1)² <4, 且 x>y>0, z>0}, (求B之體積再16倍即可)
={(x,y,z)| x²+y²+z²<4, x>y>0,z>0} -{(x,y,z)| x²+y²+z²<4, y<x<√3 y, 0<y<1, z>0}
volume(B)=(4π/3)*4-∫_[0~1]∫_[y~√3 y] √(4-x²-y²) dx dy
=(16π/3)-(1/3)∫_[π/6~π/4] [8-√(4-csc²t)³] dt
=(16π/3)-(2π/9)+(1/3)∫_[π/6~π/4]√(4-csc²t)³ dt
=(46π/9)+(1/3)∫_[π/6~π/4] √(4-csc²t)³ dt (橢圓積分)
~(46π/9)+(1/3)(0.3767)
Ans: 16*Volume(B)/8= 2*Volume(B)

(因原題球半徑為1,正方體邊長為1, 故除以8)

2011-11-11 16:28:07 補充:
更正:volume(B)=(4π/3)/2-∫_[0~1]∫_[y~√3 y] √(4-x²-y²) dx dy
=(2π/3)-(1/3)∫_[π/6~π/4] [8-√(4-csc²t)³] dt
=(2π/3)-(2π/9)+(1/3)∫_[π/6~π/4]√(4-csc²t)³ dt
=(4π/9)+(1/3)∫_[π/6~π/4] √(4-csc²t)³ dt
~(4π/9)+(1/3)(0.3767)

2011-11-11 16:33:13 補充:
還有錯,晚上再Check!

2011-11-11 16:56:00 補充:
B={(x,y,z)| x²+y²+z²<4, y<√3 y, 0<1, 1





2011-11-11 17:00:02 補充:
B={ (x,y,z) | x²+y²+z² < 4, 且 x > y > 0, z > 1}, (求B之體積再16倍即可)
volume(B)=∫_[0~1]∫_[y~√3 y] √(4-x²-y²) -1 dx dy
=(1/3)∫_[π/6~π/4] [8-√(4-csc²t)³] dt - (√3 -1)/2
=(2π/9)-(1/3)∫_[π/6~π/4]√(4-csc²t)³ dt - (√3 -1)/2
Ans: (4π/9)-(2/3)∫_[π/6~π/4]√(4-csc²t)³ dt - √3 +1 ~ 0.41308

2011-11-11 17:33:09 補充:
最後更正:
B={ (x,y,z) | x²+y²+z² < 4, 且 x > y > 1, z > 1}, (求B之體積再16倍即可)
vol(B)=∫_[a~π/4]∫_[csct~√3] [√(4-r²) -1] rdr dt ( tana= 1/√2 )
Ans: 2vol(B)~ 0.0152

2011-11-11 17:48:18 補充:
B={ (x,y,z) | (x+1)²+(y+1)²+(z+1)² < 4, 且 x > y > 0, z > 0},
={ (x,y,z) | x²+y²+z² < 4, 且 x > y > 1, z > 1}
2011-11-12 12:03 am
What is your teacher's final answer?

2011-11-11 16:17:02 補充:
Around 1/9?

2011-11-11 17:18:38 補充:
Yes some mistake!!something like 1/66
2011-11-08 6:15 am
You can TRY TRY!

It's still very difficult even you use integration!

2011-11-11 16:08:24 補充:
Actually, he didn't give me the ans, but he agree with my method...

And I've check few times, and the ans the very make sense.

2011-11-11 16:16:27 補充:
林春生,

http://hk.knowledge.yahoo.com/question/question?qid=7011110200186

你如何算出126.04?

2011-11-11 16:19:10 補充:
Impossible!

The answer is much smaller!

Do you really understand this Q?

2011-11-11 17:19:37 補充:
Umm...GD JOB...

2011-11-11 17:20:50 補充:
I asked sth to you in your mailbox

2011-11-11 17:49:38 補充:
ok...........
2011-11-08 6:13 am
我想到一個愚蠢的方法,set個coordinate plane 跟住用 integration...


收錄日期: 2021-04-13 18:20:40
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20111107000051KK00941

檢視 Wayback Machine 備份