✔ 最佳答案
Uniform continuity 的定義是:
f(x) is uniformly continuous over I if
for any ε>0 there exists a δ>0 such that
whenever |x-y|<δ, x,y in I, then |f(x)-f(y)|<ε.
我們知道 f(x)=x^2 continuous on R, 因此當然也
continuous on [0,+∞). 但它不是 uniformly continuous,
其關鍵在於 uniformly continuous 定義中的 δ 與 x, y
無關, 而普通的 pointwise continuity 是 fix x, 而取的
δ 可以與 x 有關.
從定義來看, 要證明不是 uniformly continuous, 就是
證明:
For some ε0>0 such that for any δ>0,
there exists a sequence of (x_n,y_n)
such that
|y_n-x_n|<δ for all n,
but |f(y_n)-f(x_n)|>ε0 for infinitly many n.
考慮 y_n = x_n + δ' where 0<δ'<δ, 例如取 δ'=δ/2.
則
|f(y_n)-f(x_n)| = |(x_n+δ')^2-x_n^2| = |2δ'x_n+δ'^2| > (2x_n)δ'
當 x_n↑+∞ 時, |f(y_n)-f(x_n)|→+∞.
因此, for fixed ε0>0, for any δ>0, we have a sequence of (x_n,y_n)
such that
|y_n-x_n|<δ for all n, but |f(y_n)-f(x_n)|>ε0 for sufficiently large n.
這證明了 f(x)=x^2 在 [0,+∞) 不是 uniformly continuous.