✔ 最佳答案
1)cos(π/12)+isin(π/12)=cos[π/(3×4)]+isin[π/(3×4)]=cos(π/3-π/4)+isin(π/3-π/4)=[cos(π/3)cos(π/4)+sin(π/3)sin(π/4)] +i[sin(π/3)cos(π/4)-sin(π/4)cos(π/3)]=[(1/2)(√2/2)+(√3/2)(√2/2))+i[(√3/2)(√2/2)-(√2/2)(1/2)]=(√2/4+√6/4)+i(√6/4-√2/4)=[(√2+√6)/4]+i[(√6-√2)/4]=[√2(1+√3)/4]+i[√2(√3-1)/4]=[2(1+√3)/(4√2)]+i[2(√3-1)/(4√2)]=(1+√3)/(2√2)+i[(√3-1)/(2√2)] ***cos(π/12)+isin(π/12)=e^(iπ/12) [By Euler’sformula] 2)cos(13π/12)+isin(13π/12)=cos(π+π/12)+isin(π+π/12)=-cos(π/12)-isin(π/12)=-{cos(π/12)+isin(π/12)}=-{[(1+√3)/(2√2)]+i[(√3-1)/(2√2)]}=i[(1-√3)/(2√2)]-(1+√3)/(2√2) ***cos(13π/12)+isin(13π/12)=-cos(π/12)-isin(π/12)=-[cos(π/12)+isin(π/12)]=e^(iπ/12)[ByEuler’s formula]
2011-10-31 18:20:16 補充:
改正:尾二行:
錯:=e^(iπ/12)
對:=-e^(iπ/12)
2011-11-01 11:26:06 補充:
Q1:為什麼是要用3X4!??2X6不行嗎!??
可以。但情況會變複雜(你可試試)
Q2:那接下來為什麼是要用減的!??
如此般可用差角公式計出準確值
Q3:那如果題目是說Cos(5π/6)+iSin(5π/6) 我該怎麼算!??
Cos(5π/6)+iSin(5π/6)=Cos(π-π/6)+iSin(π-π/6)=-Cos(π/6)+iSin(π/6)
可參考
http://en.wikipedia.org/wiki/List_of_trigonometric_identities#Symmetry
參考: Hope I Can Help You ! ^_^ ( From Me ), 希望幫到你