Matrix

2011-10-31 7:59 am
A is a 3 x 3 matrix.
Given that :
1) det A = - 1.
2) det (A - I) = 0.
3) det (A + I) = 0.
Prove that (A + I)(A - I)^2 = (A - I)^2(A + I) = (A - I)(A + I)(A - I) = 0 ( zero matrix, not simply singular matrix).
更新1:

To : :自由自在 By the same token, if x^n = (x - 1)^(x + 1)g(x) + px^2 + qx + r, can we say that this is the characteristic polynomial for matrix A, if A satisfies all 3 conditions. That is A^n = (A - I)^2(A + I) g(A) + pA^2 + qA + rI ?

回答 (1)

2011-11-03 4:39 am
✔ 最佳答案
http://i1090.photobucket.com/albums/i376/Nelson_Yu/int-129.jpg

圖片參考:http://i1090.photobucket.com/albums/i376/Nelson_Yu/int-129.jpg


2011-11-03 19:58:27 補充:
There is only one characteristic polynomial for A, viz (λ-1)(λ-1)(λ+1)
Your equation cannot be called characteristic equation.
Given x^n = (x - 1)^(x + 1)g(x) + px^2 + qx + r, it is always true that
A^n = (A - I)^2(A + I) g(A) + pA^2 + qA + rI

2011-11-03 19:59:07 補充:
No special condition is required.
Given the 3 conditions, (A-I)^2(A+I)=0 so
A^n = pA^2 + qA + rI


收錄日期: 2021-04-24 10:21:04
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20111030000051KK01232

檢視 Wayback Machine 備份