✔ 最佳答案
Let X = Amount of water discharged.
(a) P(Amount more than 308) = P(X > 308) = P[(X - 300)/5 > (308 - 300)/5]
= P(Z > 1.6) = 0.5 - A(1.6) = 0.5 - 0.4452 = 0.0548.
(b) P(Amount between 295 and 315) = P(295 < X < 315)
= P[(295 - 300)/5 < (X - 300)/5 < (315 - 300)/5]
= P(- 1 < Z < 3) = A(1) + A(3) = 0.3413 + 0.4987 = 0.84.
(c) P(Amount more than k) = P(X > k)
= P[(X - 300)/5 > (k - 300)/5] = P[Z > (k - 300)/5] = A[(k - 300)/5] which is 95%.
95% = 0.95 = 0.5 + 0.45 = 0.5 + A( - 1.645)
so A(-1.645) = A[(k - 300)/5]
- 1.645 = (k - 300)/5
k = 300 - 8.225 = 291.775 mL.
(c) This is a Binomial Distribution with n = 25 and p = 0.0548
P(2 or more cups contain more than 308) = 1 - P(No cup more than 308) - P(1 cup more than 308) = 1 - 25C0(1 - 0.0548)^25 - 25C1(0.0548)(1 - 0.0548)^24
= 1 - 0.2444 - 0.3542 = 0.40136