Matrix

2011-10-30 3:44 pm
A is a 3 x 3 square matrix. If det ( I - A) = 0 and (I - A) transpose = A - I, prove that det ( I - A^4) = 0.
更新1:

To : 自由自在 (I - A)^T = A - I provided is to make sure that there is no ambiguity in the type of matrix A, I am not sure if det(I - A^4) is true for all type of matrix.

回答 (2)

2011-10-30 5:55 pm
✔ 最佳答案
det (I - A4) = det [(I - A)(I + A)(I + A2)]

= det (I - A) x det (I + A) x det (I + A2)

= 0
參考: 原創答案
2011-10-30 7:39 pm
I do not understand why need the condition (I - A)^T = A - I. Does not seem to be required in the analysis.

2011-10-30 12:06:30 補充:
I guess 將軍has proved this is true...


收錄日期: 2021-04-24 10:07:04
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20111030000051KK00161

檢視 Wayback Machine 備份