ΔABC, 證明cosA cosB cosC ≤ 1/8

2011-10-29 9:41 am
ΔABC, 證明cosA cosB cosC ≤ 1/8
Show that cosA*cosB*cosC ≤ 1/8

回答 (1)

2011-10-29 3:10 pm
✔ 最佳答案
不妨設 A ≤ B ≤ C ,
當 C ≥ π/2 時(△ABC為直/鈍角△) , cosC ≤ 0 , cosA ≥ cosB > 0 , cosA cosB cosC ≤ 0 < 1/8 顯然成立。
當 △ABC為銳角△ , cosA , cosB , cosC > 0 , 所以0 < cosA cosB cosC= (1/2) [ cos(A + B) + cos(A - B) ] cosC= (1/2) [ cos(π - C) + cos(A - B) ] cosC= (1/2) [ cos(A - B) - cosC ] cosC易見 cos(A - B) - cosC , cosC > 0 ,由 G.M. ≤ A.M. , ≤ (1/2) [[[ cos(A - B) - cosC ] + cosC ] / 2 ] ² = (1/8) cos²(A - B)≤ 1/8
僅當 cos²(A - B) = 1 即 A = B 及 cos(A - B) - cosC = cosC 時取等號 ,此時 cos0 - cosC = cosC
C = π/3即僅當 A = B = C = π/3 時取等號。


收錄日期: 2021-04-24 22:56:33
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20111029000051KK00047

檢視 Wayback Machine 備份