Binomial Theorem Question 20點!

2011-10-27 6:46 am
Given that (1+2x)^n (1-kx)^3 = 1 - 60x^2 + terms involving higher powers of x.
Find n and k.

回答 (2)

2011-10-27 4:29 pm
✔ 最佳答案
(1+2x)^n * (1-kx)^5

=[1+2nx+2n(n-1)x^2+...][1-5kx+10k^2x^2+...]

=1+(2n-5k)x+[2n(n-1)+10k^2-10nk]x^2

So 2n-5k=0 and 2n(n-1)+10k^2-10nk=-60

From the first equation, we have n=2.5k, substitute into the second equation

5k(2.5k-1)+10k^2-25k^2=-60

12.5k^2-5k-15k^2=-60

2.5k^2+50k-600=0

k^2+2k-24=0

(k+6)(k-4)=0

k=4 or k=-6 (rejected) and n=2.5k=10
2011-10-27 3:36 pm
題目怪怪的 係數沒有問題嗎?


收錄日期: 2021-04-26 14:56:35
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20111026000051KK01076

檢視 Wayback Machine 備份