✔ 最佳答案
since
sinx = (e^ix - e^(-ix) )/2i
by e^x = 1 +x/1! + x^2/2! + x^3/3! + x^4/4!
we have
sinx = [( 1 + ix/1! + (ix)^2/2! + (ix)^3/3! +....) - ( 1 + (-ix) + (-ix)^2/2! + (-ix)^3/3! +....... ) ] /2i
=[ 1 +ix - x^2/2! - x^3/3! + x^4/4! +....) - ( 1 -ix - x^2/2! + x^3/3! + x^4/4! +...)]/2i
= [2i (x - x^3/3! + x^5/5! - x^7/7! +.....)]/2i
= x - x^3/3! + x^5/5! -x^7/7! +......
希望幫到你!
2011-10-27 23:47:32 補充:
since
e^ix = cosx + i sinx ----- (1)
e^-ix = cosx - i sinx -----(2)
(1)-(2)
we have
sinx = (e^ix - e^(-ix) )/2i