證明sinx=x-x³/3!+x⁵/5!-x⁷/7!+...

2011-10-27 12:31 am
證明sinx=x-x³/3!+x⁵/5!-x⁷/7!+...***不要用泰勒展開式!

回答 (4)

2011-10-27 11:34 pm
✔ 最佳答案
since

sinx = (e^ix - e^(-ix) )/2i

by e^x = 1 +x/1! + x^2/2! + x^3/3! + x^4/4!

we have

sinx = [( 1 + ix/1! + (ix)^2/2! + (ix)^3/3! +....) - ( 1 + (-ix) + (-ix)^2/2! + (-ix)^3/3! +....... ) ] /2i

=[ 1 +ix - x^2/2! - x^3/3! + x^4/4! +....) - ( 1 -ix - x^2/2! + x^3/3! + x^4/4! +...)]/2i

= [2i (x - x^3/3! + x^5/5! - x^7/7! +.....)]/2i

= x - x^3/3! + x^5/5! -x^7/7! +......



希望幫到你!

2011-10-27 23:47:32 補充:
since

e^ix = cosx + i sinx ----- (1)

e^-ix = cosx - i sinx -----(2)

(1)-(2)

we have

sinx = (e^ix - e^(-ix) )/2i
2011-10-28 9:50 am
Let z = cos x + i sin x
dz/dx = -sin x +i cos x
dz/dx = iz
∫ 1/z dz =∫ i dx
ln z = ix
e^(ix) = z = cos x + i sin x
(euler's formula)
2011-10-27 3:18 am
actually,if u prove euler's formular without this, u will hv done it
2011-10-27 2:59 am
唔用 taylor series 咁用咩?


收錄日期: 2021-04-11 18:51:52
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20111026000051KK00521

檢視 Wayback Machine 備份