✔ 最佳答案
57) M.I. of combined rod + particle = 0.82 M/12 + (M/3) x 0.42 = 0.32M/3
So total angular momentum = 0.32M/3 x 20 = 6.4M/3
At the moment when the particle leaves the rod:
Velocity of particle = vp, giving an angular momentum of 0.4Mvp/3
Velocity of the end of the rod = vp - 6, goving an angular momentum of (0.64M/12) (vp - 6)/0.4 = (2M/15) (vp - 6)
Hence:
(2M/15) (vp - 6) + 0.4Mvp/3 = 6.4M/3
2vp - 12 + 2vp = 32
4vp = 44
vp = 11 m/s
61) Total angular momentum = 0.12 x 2.4 = 0.288 kg m2/s
Total M.I. of rod + putty = 0.12 + 0.2 x 0.62 = 0.192
Hence new angular speed = 0.288/0.192 = 1.5 rad/s
65) Total M.I. of merry + boy = 150 + 30 x 22 = 270 kg m2
Angular momentum contributed by the ball = 1 x 2 cos 37 x 12 = 19.2 kg m2/s.
Combined M.I. of merry + boy + ball = 270 + 1 x 22 = 272 kg m2.
So angular speed = 19.2/272 = 0.070 rad/s
67a) Total M.I. = 2 x 2 x 0.252 = 0.25 kg m2.
Angular momentum contributed by the wad = 0.05 x 0.25 x 3 = 0.0375 kg m2/s
New total M.I. = 0.25 + 0.05 x 0.252 = 0.253125 kg m2.
So angular speed = 0.0375/0.253125 = 0.148 rad/s
b) K.E. of wad before collision = 0.5 x 0.05 x 32 = 0.225 J
K.E. after collision = 0.5 x 0.253125 x 0.1482 = 0.00278 J
So the ratio is 0.00278/0.225 = 0.0123
c) Suppose that it will turn through θ before mom stops again, then:
G.P.E. gain by the ball w/o wad = 2 x 0.25 sin θ = 0.5 sin θ
G.P.E. loss by the ball with wad = 2.05 x 0.25 sin θ = 0.5125 sin θ
So when it mom stops, K.E. = 0, i.e.
G.P.E. gain by the ball w/o wad - G.P.E. loss by the ball with wad = 0.00278 J which is the initial K.E. just after collision.
0.5 sin θ - 0.5215 sin θ = 0.00278
-0.0215 sin θ = 0.00278
sin θ = - 0.129
θ = 181