✔ 最佳答案
Let a1 = x + 1/x, a2 = y + 1/y and a3 = z + 1/x.
b1 = b2 = b3 = 1
Then by Cauchy-Schwarz's ineq.:
[(x + 1/x)2 + (y + 1/y)2 + (z + 1/z)2](12 + 12 + 12) >= (x + y + z + 1/x + 1/y + 1/z)2
3[(x + 1/x)2 + (y + 1/y)2 + (z + 1/z)2] >= (1 + 1/x + 1/y + 1/z)2
Now using Arithmetic mean >= Harmonic mean:
(x + y + z)/3 >= 3/(1/x + 1/y + 1/z)
1/3 >= 3/(1/x + 1/y + 1/z)
1/x + 1/y + 1/z >= 9
Hence:
3[(x + 1/x)2 + (y + 1/y)2 + (z + 1/z)2] >= (1 + 1/x + 1/y + 1/z)2
= 102
= 100
Finally
(x + 1/x)2 + (y + 1/y)2 + (z + 1/z)2 >= 100/3 = 33 + 1/3
For equality to hold:
In the CS ineq.: x + 1/x = y + 1/y = z + 1/z
In the AM >= HM: x = y = z
Hence equality holds when x = y = z = 1/3