F4quatratic equation

2011-10-21 2:31 am
x*(x+2)*(x+4)*(x+6) - 21 = 0
x=?

回答 (2)

2011-10-21 2:52 am
✔ 最佳答案
x (x + 2) (x + 4) (x + 6) - 21 = 0x(x + 6) (x + 2)(x + 4) - 21 = 0(x² + 6x) (x² + 6x + 8) - 21 = 0(x² + 6x + 4 - 4) (x² + 6x + 4 + 4) - 21 = 0(x² + 6x + 4)² - 4² - 21 = 0(x² + 6x + 4)² - 37 = 0(x² + 6x + 4 - √37) (x² + 6x + 4 + √37) = 0(x² + 6x + 4 - √37) = 0 or (x² + 6x + 4 + √37) = 0x = ( - 6 ± √ (6² - 4(4 - √37)) ) / 2 or x = ( - 6 ± √ (6² - 4(4 + √37)) ) / 2 x = - 3 ± √ (5 + √37) or x = - 3 ± √ (5 - √37) = - 3 ± i √ (√37 - 5)

2011-10-20 19:08:31 補充:
Chak Pui( 小學級 4 級 )

你即管抄吧,你很想被檢舉吧?
2011-10-21 3:01 am
x (x + 2) (x + 4) (x + 6) - 21 = 0x(x + 6) (x + 2)(x + 4) - 21 = 0(x² + 6x) (x² + 6x + 8) - 21 = 0(x² + 6x + 4 - 4) (x² + 6x + 4 + 4) - 21 = 0(x² + 6x + 4)² - 4² - 21 = 0(x² + 6x + 4)² - 37 = 0(x² + 6x + 4 - √37) (x² + 6x + 4 + √37) = 0(x² + 6x + 4 - √37) = 0 or (x² + 6x + 4 + √37) = 0x = ( - 6 ± √ (6² - 4(4 - √37)) ) / 2 or x = ( - 6 ± √ (6² - 4(4 + √37)) ) / 2
x = - 3 ± i √ (√37 - 5) or - 3 ± √ (5 + √37)


收錄日期: 2021-04-21 22:22:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20111020000051KK00526

檢視 Wayback Machine 備份