數學知識交流---因式分解

2011-10-19 4:02 am
(1)

(a)

因式分解 10x^3 - 3x^2 - 19x + 12。

(b)

由此,因式分解 6y^6 + y^4 - 19y^2 + 12 + 4(y^4)(y+1)(y-1)。

(2)

(a)

因式分解 21a^2 + 10ab - 24b^2。

(b)

由此,因式分解 21(t^2-6t+9) + 10(t^2+t-12) - 24(t^2+8t+16)。

(c)

由此,因式分解 21y^8 + 10(y^5+y^4) - 24(y^2+2y+1)。

回答 (1)

2011-10-19 5:13 am
✔ 最佳答案
(1)
(a) 因式分解 10x^3-3x^2-19x+12
10x^3-3x^2-19x+12
=(10x^3-10x^2)+(7x^2-7x)-(12x-12)
=10x^2(x-1)+7x(x-1)-12(x-1)
=(10x^2+7x-12)(x-1)
=(2x+3)(5x-4)(x-1)
(b)由此,因式分解 6y^6 + y^4-19y^2+12+4(y^4)(y+1)(y-1)
6y^6+y^4-19y^2+12+4(y^4)(y+1)(y-1)
=y^4(6y^2+1+4y^2-4)-19y^2+12
=y^4(10y^2-3)-19y^2+12
=10y^6-3y^4-19y^2+12
=(2y^2+3)(5y^2-4)(y^2-1)
=(2y^2+3)(5y^2-4)(y+1)(y-1)

(2)
(a)因式分解 21a^2+10ab-24b^2。
21a^2+10ab-24b^2
=(21a^2+28ab)-(18ab+24b^2)
=7a(3a+4b)-6b(3a+4b)
=(7a-6b)(3a+4b)
(b)由此,因式分解 21(t^2-6t+9) + 10(t^2+t-12)-24(t^2+8t+16)。
a=t-3,b=t+4,ab=t^2+t-12
21(t^2-6t+9)+10(t^2+t-12)-24(t^2+8t+16)
=21a^2+10ab-24b^2
=(7a-6b)(3a+4b)
=(7t-21-6t-24)(3t-9+4t+16)
=(t-45)(7t+7)
(c)由此,因式分解21y^8+10(y^5+y^4)-24(y^2+2y+1)
a=y^4,b=y+1,ab=y^5+y^4
21y^8+10(y^5+y^4)-24(y^2+2y+1)
=21a^2+10ab-24b^2
=(7a-6b)(3a+4b)
=(7y^4-6y-6)(3y^4+4y+4)




收錄日期: 2021-05-02 10:48:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20111018000051KK00691

檢視 Wayback Machine 備份