✔ 最佳答案
det M = 0 => ad - bc = 0 => ad = bc.
Let p(n) be the proposition that M^(n+1) = (a+d)^n M for postivie integers n.
n = 1:
M^(1+1) = M^2
圖片參考:
http://latex.codecogs.com/gif.latex?\left( \begin{array}{cc}a&b\\c&d\end{array} \right)\left( \begin{array}{cc}a&b\\c&d\end{array} \right)=\left( \begin{array}{cc}a&b\\c&d\end{array} \right)=\left( \begin{array}{cc}a^2+bc&ab+bd\\ac+cd&bc+d^2\end{array} \right)=\left( \begin{array}{cc}a^2+ad&ab+bd\\ac+cd&ad+d^2\end{array} \right)
圖片參考:
http://latex.codecogs.com/gif.latex?=\left( \begin{array}{cc}a(a+d)&b(a+d)\\c(a+d)&d(a+d)\end{array} \right)=(a+d)M
Therefore p(n) is true for n=1.
Assume n = k is true. i.e.,
圖片參考:
http://latex.codecogs.com/gif.latex?M^{n+1}=(a+d)^nM
Then for n = k+1,
圖片參考:
http://latex.codecogs.com/gif.latex?M^{n+2}=(a+d)^nM^2=(a+d)^n(a+d)M=(a+d)^{n+1}M
By MI, p(n) is true for all positive integers n.