四面體與圓球體

2011-10-13 1:15 am
任何一個三角型都可以用一個圓形來圍繞三角形的三只角/(三點)

那麼, 是否任何一個四面體, 不論比例, 都可以用一個圓球體包裹着四面體的四只角/(四點)?

ps. 包裹的意思是四只角剛好碰到圓球體, 沒有多, 也沒有少

謝謝!
更新1:

"任何一個三角型都可以用一個圓形來圍繞三角形的三只角/(三點)" ps. 三角形的三只角剛好碰到圓圈, 沒有多, 也沒有少

回答 (1)

2011-10-13 3:50 am
✔ 最佳答案
The answer is yes.

First we rotate the tetrahedral ABCD that one of the plane ABC is parallel to the xy-plane in cartesian coordinate system.

Draw a line L that passing through the circumcentre, perpendicular to the xy-plane. Then all points on L is equaldistant to ABC.

Now we shall prove that there exist a point P on L that PA=PB=PC=PD.
On one of the side and tends to infinitely far, PD > PA=PB=PC.
And on another side tends to infinitely far, PD < PA=PB=PC.
Since change in length is differentiable at any point on L, by fixed point theorem/mean value theorem, there exist a point P that PD = PA = PB = PC.
And since the distance (PD-PA) behaves monotonically, we can conclue that the sphere that touches all 4 vertices of a tetrahedral is unique.


收錄日期: 2021-04-24 10:55:51
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20111012000051KK00407

檢視 Wayback Machine 備份