✔ 最佳答案
1.令y=e^(λx),y’=λ*e^(λx),y’’=(λ^2)*e^(λx)代回原式,
得特性方程式λ^2-λ=λ(λ-1)=0→λ=0 orλ=1
故y=c1*e^0+c2*e^1=c1+c2*e^x
此題不是答案有錯,就是題目有誤
2.令z=y'=dy/dx,則y''=dy'/dx=dz/dx=(dz/dy)(dy/dx)=z(dz/dy)
故原式可改寫成:
yz(dz/dy)=3z^2
(1/z)dz=(3/y)dy
lnz=3lny
z=k*y^3
dy/dx=k*y^3
dy/(y^3)=kdx
-1/y^2=kx+l
1/y^2=c1x+c2(c1=-k, c2=-l)
y=(c1x+c2)^(-1/2)
3.同2,令z=y',則原式改寫成
y(z*dz/dy)+z^3*cosy=0
dz/dy=-z^2*cosy
dz/(z^2)=-cosydy
-1/z=-siny+c1
1/z=siny+c1
dx/dy=siny+c1
dx=(siny+c1)dy
x=-cosy+c1y+c2 4.4(x^2)y’’-3y=0(x^2)y’’-(3/4)y=0,此為標準之Euler-Cauchy方程式,令y=x^m,y’=m*x^(m-1),y’’=m(m-1)*x^(m-2)代回原式m^2-m-3/4=0,4m^2-4m-3=(2m-3)(2m+1)=0,m=3/2 or m=-1/2故y=c1*x^(3/2)+c2*x^(-1/2)y’=(3/2)*c1*x^(1/2)-(1/2)*c2*x^(-3/2)將條件y(1)=-3,y’(1)=0代入得:c1+c2=-3(3/2)*c1-(1/2)*c2=0解聯立方程式得c1=-0.75,c2=-2.25y=-0.75x^(3/2)-2.25x^(-1/2)