證明sinx=x-x³/3!+x⁵/5!-x⁷/7!+...

2011-10-11 12:18 am
證明sinx=x-x³/3!+x⁵/5!-x⁷/7!+...

回答 (1)

2011-10-11 12:48 am
✔ 最佳答案
We can use the Maclaurin's series (Taylor's series of expansion at x = 0), where:

f(x) = f(0) + x f'(0) + x2 f"(0)/2! + x3 f(3)(0)/3! + ...

= Σ (n = 0 → ∞) xn f(n)(0)/n!

Let f(x) = sin x, then:

f(0) = 0

f'(0) = 1

f"(0) = 0

f(3)(0) = -1

Then in general we have:

f(2n)(0) = 0 for any non-negative integer n.

f(2n-1)(0) = (-1)n-1 for any non-negative integer n.

Hence the Maclaurin's series becomes

sni x = Σ (n = 0 → ∞) xn f(n)(0)/n!

= Σ (n = 0 → ∞) x2n-1 f(2n-1)(0)/(2n - 1)!

= x - x3/3! + x5/5! - x7/7! + ...
參考: 原創答案


收錄日期: 2021-04-13 18:17:27
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20111010000051KK00364

檢視 Wayback Machine 備份