✔ 最佳答案
ni is a complex no. which can be written in exp. form keiθ where k and θ are both real, then:
ni = keiθ
Taking natural log to both sides:
i ln n = ln k + iθ
Thus if n = 0, the expression ni is undefined
If n > 0:
i ln n = ln k + iθ
Comparing real and imag. parts:
ln k = 0, giving k = 1
θ = ln n
Hence ni = keiθ = ei ln n = cos (ln n) + i sin (ln n)
where the angle expressed as ln n is in radian
If n < 0:
i ln n = ln k + iθ
i ln [(-n) eiπ] = ln k + iθ
i [ln (-n) + iπ] = ln k + iθ
-π + i ln (-n) = ln k + iθ
Comparing real and imag. parts:
ln k = -π, giving k = e-π
θ = ln (-n)
Hence ni = keiθ = ei ln(-n) = (1/eπ) {cos [ln (-n)] + i sin [ln (-n)]}
where the angle expressed as ln (-n) is in radian