✔ 最佳答案
1 1xn + 2x(n-1)+.....+ nx1
= Σ k(n + 1 - k)
= nΣ k + Σ k - Σ k^2
= n^2(n + 1)/2 + n(n + 1)/2 - n(n + 1)(2n + 1)/6
= n(n + 1)^2/2 - n(n + 1)(2n + 1)/6
= n(n + 1)/6 * [3(n + 1) - (2n + 1)]
= n(n + 1)(n + 2)/6
2 when n is even
1^2 + 2x2^2 +3^2 + 2x4^2 +5 ^2 + 2x6^2 +... 2xn^2
= (1^2 + 2^2 + ... + n^2) + (2^2 + 4^2 + ... + n^2)
= n(n + 1)(2n + 1)/6 + 4(1^2 + 2^2 + ... + (n/2)^2)
= n(n + 1)(2n + 1)/6 + 4[(n/2)(n/2 + 1)(n + 1)/6]
= n(n + 1)(2n + 1)/6 + n(n + 2)(n + 1)/6
= n(n + 1)^2/2
when n is odd
1^2 + 2x2^2 +3^2 + 2x4^2 +5 ^2 + 2x6^2 +... n^2
= (1^2 + 2^2 + ... + n^2) + (2^2 + 4^2 + ... + (n - 1)^2)
= n(n + 1)(2n + 1)/6 + 4(1^2 + 2^2 + ... + (n - 1)/2)^2)
= n(n + 1)(2n + 1)/6 + 4[(n - 1)/2)((n - 1)/2 + 1)(n)/6]
= n(n + 1)(2n + 1)/6 + n(n - 1)(n + 1)/6
= n^2(n + 1)/2