Maths F.5 Trigonometry

2011-09-26 5:08 am
1) Solve cos(150+x) = sin120 where x is larger than or equal to 0 and is
smaller than or equal to 180.

2) Solve the equation (sinx)^2 - sinx cosx = 6(cosx)^2 for x is larger than
or equal to 0 and is smaller than 360. (corr the answer to 1 d.p.)

回答 (1)

2011-09-26 6:16 am
✔ 最佳答案
1) Solve cos(150° + x) = sin120° where x is larger than orequal to 0 and is smaller than or equal to 180°.

Solution :
0° ≤ x ≤ 180°
150° ≤ (150° + x) ≤ 330°

cos(150° + x) = sin120°
cos(150° + x) = sin(180° - 120°)
cos(150° + x) = sin60°
cos(150° + x) = cos(90° - 60°)
cos(150° + x) = cos30°
cos(150° + x) = cos(360° - 30°)
cos(150° + x) = cos330°
150° + x = 330°
x = 180°


2) Solve the equation (sinx)² - sinx cosx = 6(cosx)² for x is larger than orequal to 0° and is smaller than 360°. (corr the answer to 1 d.p.)

Solution :
(sinx)² - sinx cosx = 6(cosx)²
(sinx)² - sinx cosx - 6(cosx)² = 0
[(sinx)² - sinx cosx - 6(cosx)²] /(cosx)² =0
(tanx)² - tanx - 6 = 0
(tanx + 2)(tanx - 3) = 0
tanx = -2, 3
x = (180-63.4)°,(360-63.4)°,71.6°, (180+71.6)°
x = 116.6°, 296.6°,71.6°, 251.6°
參考: 賣女孩的火柴


收錄日期: 2021-04-13 18:15:42
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110925000051KK01011

檢視 Wayback Machine 備份