✔ 最佳答案
命題P(n) :
1/(3x5) + 1/(5 x 7) + 1/(7x11) + ...... + 1/(2n+1)(2n+3) = n/(6n+9)
當 n = 1 :
左式 = 1/(3x5) = 1/15
右式 = 1/(6*1+9) = 1/15
由於左式 = 右式
故 P(1) 正確。
設 P(k) 正確,求證P(k+1) 亦正確。
即設 1/(3x5) + 1/(5 x 7) + 1/(7x11) + ...... +1/(2k+1)(2k+3) = k/(6k+9) 正確
求證 1/(3x5) + 1/(5 x 7) + 1/(7x11) +...... + 1/(2k+3)(2k+5) = (k+1)/(6k+15) 亦正確
證明:
左式
= [1/(3x5) + 1/(5 x 7) + 1/(7x11) + ...... + 1/(2k+1)(2k+3)] + 1/(2k+3)(2k+5)
= [k/(6k + 9)] + 1/(2k + 3)(2k + 5)
= [k(2k + 3)(2k + 5) + (6k + 9)] / (6k + 9)(2k+3)(2k+5)
= [k(2k + 3)(2k + 5) + 3(2k + 3)] / 3(2k+3)²(2k+5)
= (2k + 3)[k(2k + 5) + 3] / 3(2k+3)²(2k+5)
= (2k²+5k+3) /3(2k+3)(2k+5)
= (2k+3)(k+1) / 3(2k+3)(2k+5)
= (k+1) / 3(2k+5)
= (k+1)/(6k+15)
= 右式
故得證當 P(k) 正確時,P(k+1)亦正確。
根據數學歸納法的原理,對所有正整數 n,命題 P(n)正確。