數學知識交流-函數求值

2011-09-22 2:27 am
設P(x) = x^4 + ax^3 + bx^2 + cx + d,其中a、b、c、d為常數。若P(1) = 1993,P(2) = 3986,P(3) = 5979。計算[ P(11) +P(-7) ] / 4。

回答 (2)

2011-09-22 2:58 am
✔ 最佳答案
數學知識交流-函數求值
設P(x) = x^4 +ax^3 + bx^2 + cx + d,其中a、b、c、d為常數。若P(1) =1993,
P(2) = 3986,P(3) = 5979。計算[ P(11) +P(-7) ] / 4。
Sol
P(x)=(x-e)(x-1)(x-2)(x-3)+f(x-1)(x-2)(x-3)+g(x-1)(x-2)+h(x-1)+1993
P(2)=h(1)+1993=3986
h=1993
P(x)=(x-e)(x-1)(x-2)(x-3)+f(x-1)(x-2)(x-3)+g(x-1)(x-2)+1993x
P(3)=g(2)(1)+5979=5979
g=0
P(x)=(x-e)(x-1)(x-2)(x-3)+f(x-1)(x-2)(x-3)+1993x
P(11)=(11-e)(10)(9)(8)+f(10)(9)(8)+21923
=-720e+720f+29843
P(-7)=(-7-e)(-8)(-9)(-10)+f(-8)(-9)(-10)-13951
=720e-720f-8911
So
[P(11)+P(-7)]/4
=(29843-8911)/4
=5233


2011-09-22 3:09 am
5233 sorry .


收錄日期: 2021-04-13 18:15:18
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110921000051KK00603

檢視 Wayback Machine 備份