高二物理-三角函數

2011-09-22 3:07 am
1.設15度小於等於x小於等於75度,求sin^4x+cos^4x的最大.最小值



2.設@=180度,化簡sin^4@/8+sin^43@/8+sin^45@/8+sin^47@/8之值為?

回答 (1)

2011-09-22 3:51 am
✔ 最佳答案
..........................
1.設15度<=x<=75度,求Sin^4 x+Cos^4 x的最大,最小值
Sol
Sin^4 x+Cos^4 x
=(Sin^2 x+Cos^2 x)^2-2Sin^2 xCos^2 x
=1-(1/2)*(2SinxCosx)^2
=1-(1/2)Sin^2 (2x)
15度<=x<=75度
30度<=2x<=150度
Sin30度=1/2,Sin90度=1,Sin150度=1/2
1/2<=Sin(2x)<=1
1/4<=Sin^2 (2x)<=1
1/8<=(1/2)Sin^2 (2x)<=1/2
-1/2<=-(1/2)Sin^2(2x)<=-1/8
1/2<=1-(1/2)Sin^2(2x)<=7/8
1/2<=Sin^4 x+Cos^4 x<=7/8

2.設@=180度,化簡Sin^4 @/8+Sin^4 3@/8+Sin^45@/8+Sin^4 7@/8之值為?
Sol
Sin^4 @/8+Sin^4 3@/8+Sin^4 5@/8+Sin^4 7@/8
=Sin^4 @/8+Sin^4 7@/8+Sin^4 3@/8+Sin^4 5@/8
=Sin^4 @/8+Sin^4 @/8+Sin^4 3@/8+Sin^4 3@/8
=2Sin^4 @/8+2Sin^4 3@/8
Sin^2 22.5度=(1-Cos45度)/2=(2-Ccos45度)/4=(2-√2)/4
Sin^4 22.5度=(6-4√2)/4
Sin^2 67.5度=(1-Cos135度)/2=(2-2Cos135度)/4=(2+√2)/4
Sin^4 67.5度=(6+4√2)/16
Sin^4 @/8+Sin^4 3@/8+Sin^4 5@/8+Sin^4 7@/8
=2*(12/16)
=3/2




收錄日期: 2021-04-30 15:57:07
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110921000015KK05188

檢視 Wayback Machine 備份